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Abstract

Dissolved gas analysis (DGA) is one of the most useful techniques to detect the incipient faults of power transformer. However, the
identification of the faulted location by the traditional method is not always an easy task due to the variability of gas data and operational
natures. In this paper, a novel cerebellar model articulation controller (CMAC) neural network (NN) method is presented for the fault diagnosis
of power transformers. By introducing the IEC standard 599 to generate the training data, and using the characteristic of self-learning and
generalization, like the cerebellum of human being, a CMAC NN fault diagnosis scheme enables a powerful, straightforward, and efficient
fault diagnosis. With application of this scheme to published transformers data, the diagnoses demonstrate the new scheme with high accuracy
and high noise rejection ability. Moreover, the results also proved the ability of multiple incipient faults detection.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Power transformers are essential devices in a transmission
and distribution system. Failure of a power transformer may
cause a break in power supply and loss of profits. Therefore,
it is of great importance to detect incipient failures in power
transformers as early as possible, so that we can switch them
safely and improve the reliability of power systems.

A long in-service transformer is subject to electrical and
thermal stresses, which may form byproduct gases to in-
dicate the type of incipient failure. Dissolved gas analysis
(DGA) is a common practice in the incipient fault diagno-
sis of power transformers[1,2], which tests and samples
the insulation oil of transformers periodically to obtain the
constituent gases in the oil due to breakdown of the insulat-
ing materials inside. As study results indicate, corona, over-
heating and arcing are the three main causes for insulation
degradation in a transformer[2–4]. The energy dissipation is
least in corona, medium in overheating, and highest in arc-
ing. The fault related gases include hydrogen (H2), methane
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(CH4), acetylene (C2H2), ethane (C2H6), carbon monoxide
(CO), and carbon dioxide (CO2).

In the past decade, various fault diagnosis techniques
have been proposed that include the conventional key gas
method, ratio method[2–5], and recently, the expert sys-
tems [6], neural network[7,8,13,14]and fuzzy logic ap-
proaches[9–12]. The conventional key gas or ratio method
is based on experience in fault diagnosis using DGA data,
where may vary from utility to utility due to the heuristic
nature of methods and no general mathematical formula-
tion can be utilized. The expert system and fuzzy logic ap-
proaches can take human expertise and DGA standards from
the fault diagnosis system, and have been successfully ap-
plied in this field. However, there are some intrinsic short-
comings, such as the difficulty of acquiring knowledge and
maintaining database, so, their effectiveness depends on the
completeness and precision of expert expertise. The neural
network can directly acquire experience from the training
data, and exhibit highly non-linear input–output relation-
ships. This can overcome some of the shortcomings of ex-
pert system. However, the amount of training data must be
large enough to ensure proper training. Non-training data
are easy to cause wrong diagnoses. Moreover, the multi-
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ple faults diagnoses and fault anticipation abilities are still
lacking.

In this paper, a novel CMAC NN method is presented for
the fault diagnosis of power transformers. Using the char-
acteristic of self-learning and generalization, like the cere-
bellum of human being, the CMAC NN diagnosis scheme
enables a powerful, straightforward, and efficient fault di-
agnoses. First, we generated the virtual training data based
on the IEC standard 599 to replace the large amount actual
training data. Second, we developed a CMAC NN diagno-
sis model and using virtual training data to train the mem-
ory weights. Finally, the proposed scheme can be used to
diagnose the fault type of power transformers. Compare the
diagnosis and actual fault type, the difference is used to re-
fine the memory weights. With application of this scheme
to published transformers data, the diagnoses demonstrate
the new scheme with high accuracy and high noise rejec-
tion ability. Moreover, the results also proved the ability of
multiple incipient faults detection.

2. Background on CMAC neural network

Albus proposed a neural model called CMAC, which like
the models of human memory, perform a reflexive process-
ing [15]. The CMAC, in a table look-up fashion, produced
a vector output in response to a state vector input.Fig. 1
shows a basic configuration of CMAC network[17], where
the input states are denoted byx ∈ Rn, and the output is
y ∈ Rm. Through a series of mappings, include the quanti-
zation, segment addresses coding, virtual addresses concate-
nation, Hash coding (if needed), and summation the fired
memory addresses weights to obtain an output. The map-
ping processes must satisfy the similar inputs excite the sim-
ilar memory addresses, i.e. if the input states are close to
(similar) in input space will have their corresponding sets
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Fig. 1. The schematic of CMAC neural network.

Table 1
IEC gas ratio codes

Ranges of the gas ratio Codes of different gas ratio

C2H2/C2H4 CH4/H2 C2H2/C2H6

<0.1 0 1 0
0.1–1 1 0 0
1–3 1 2 1
>3 2 2 2

of association cells overlap. For example, ifx1 and x2 are
similar (close),x1 excites the memory addressesa1, a2, a3,
a4, andx2 should excite the memory addressesa2, a3, a4,
a5 or a3, a4, a5, a6. If two inputs fire up the same memory
addresses, we say the similarity of the two inputs is high.
Low similarity would excite fewer same memory addresses.

As described earlier, assume the number of fired memory
cells is four. Then the summation of the fired memory cells
weights will obtain an output. Compare the output with the
desired target, the difference can be used to train the CMAC
NN. A trained CMAC NN will remember the correct map-
ping relation for the special input states. Therefore, when
the same or similar input states input again, the output will
preserve the possible correct output depending on the simi-
larity. As a result, the characteristic of generalization, local
reflexive action and self-learning make the CMAC attractive
to fault diagnosis system, especially to multiple faults and
lack of fully training data system.

3. The configuration of CMAC NN fault diagnosis
system

In dissolved gas analysis, the IEC codes have been used
widely by the utilities. From IEC standard 599, the codes of
different gas ratios and fault classifications according to the
gas ratio codes are shown inTables 1 and 2. IEC codes are
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Table 2
Fault types according to the gas ratio codes

Fault no. Fault type C2H2/C2H4 CH4/H2 C2H4/C2H6

1 No fault 0 0 0
2 <150◦C thermal fault 0 0 1
3 150–300◦C thermal fault 0 2 0
4 300–700◦C thermal fault 0 2 1
5 >700◦C thermal fault 0 2 2
6 Low energy partial discharges 0 1 0
7 High energy partial discharges 1 1 0
8 Low energy discharges 1 or 2 0 1 or 2
9 High energy discharges 1 0 2

useful for fault diagnosis in transformers, but the number of
code combinations is larger than the number of fault types,
and “no match” may be indicated in the fault diagnosis. In
this section, the CMAC NN fault diagnosis method is pro-
posed for power transformers to solve the no match, noise,
and multiple faults problems.

3.1. The development of CMAC NN fault diagnosis system

Fig. 2 shows the configuration of the CMAC NN fault
diagnosis system of power transformers. Refer to the IEC
standard 599, the gas ratio of C2H2/C2H4, CH4/H2 and
C2H4/C2H6 are used as the input states. The output contains
nine parallel memory layers and every memory layer has
one output node. Every memory layer remembers one fault
type feature, e.g. layer 1 store the features of fault type 1 of
Table 2, layer 2 stores the features of fault type 2 ofTable 2,
etc. Input one group gas ratio data, through a series of map-
ping, the input data will generate one group fired memory
addresses. To sum the excited memory addresses of each
layer, output node will obtain one value to express the pos-
sibility of fault type n. To confirm the fault type the output
value will be close to 1. Multiple nodes output 1 represents
the multiple fault types exist.

Fig. 2. The configuration of CMAC NN fault diagnosis system of power transformers.

3.2. The training of CMAC NN fault diagnosis system

The proposed scheme using the IEC codes ofTables 1
and 2 to generate the training data. Therefore, the large
amount real data are not necessary. For example, the gas ratio
code of fault type 2(C2H2/C2H4, C4/H2, C2H4/C2H6) =
(0, 0, 1), i.e. C2H2/C2H4 < 0.1, 0.1 ≤ CH4/H2 ≤ 1, 1 <

C2H2/C2H6 ≤ 3. Therefore, using the program 1 (designed
by MATLAB), the virtual training data can be generated.
In program 1 the step value STEPX determines the resolu-
tion of training data. High resolution will cause long train-
ing time. The training data then send to the CMAC network
(layer 2), through the quantization, fired addresses coding,
and sums the fired memory cells weighting to obtain an out-
put. Compare the desired output 1, then the error used to tun-
ing the fired memory weightings. The details will describe
as follows:
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Fig. 3. Quantization mapping.

3.2.1. Quantization mapping
The quantization output can be described as follows[17]

qi = Q(xi, xi,min, xi,max, qi,max), i = 1, . . . , n (1)

wheren is the input numbers. The resolution of this quan-
tization depends on the expected maximum and minimum
inputs, xi,max and xi,min, and on the number of quantiza-
tion levels,qmax. Assuming the maximum quantization level
qmax is chosen as 12,Fig. 3, the quantization mapping dia-
gram, shows that the input state between 0.1 and 1, 1 and 3
are divided five quantization levels, respectively. Noted we
can change theqmax value depending on the resolution re-
quirements.

3.2.2. Segment address mapping
Table 3 lists the mapping relation of quantization level

and the segment address, which the quantization levelqmax
is 8 andA∗, the number of associated (fired) memory cells
is 4. For example, the quantization level 3 will map a group
segment addresses [v11, v12, v13, v14] = [5, 6, 3, 4].

3.2.3. Concatenation and output mapping
As described above, each input state producesA∗ segment

addresses. The concatenation unit then concatenated these
segment addresses as a virtual address. The concatenation
equation can be expressed as

Vj = concat(vj1, vj2, . . . , vjn), j = 1, . . . , A∗ (2)

Assuming the gas ratio quantization levels of (C2H2/C2H4,
CH4/H2, C2H2/C2H6) are equal to (3, 6, 8), then the segment
addresses generated by C2H2/C2H4 are [v11, v12, v13, v14] =
[5, 6, 3, 4], by CH4/H2 are [v21, v22, v23, v24] = [9, 6, 7, 8]

Table 3
Quantization level and segment address mapping segment address

Segment address Quantization level

1 2 3 4 5 6 7 8

11 v3

10 v2 v2

9 v1 v1 v1

8 v4 v4 v4 v4

7 v3 v3 v3 v3

6 v2 v2 v2 v2

5 v1 v1 v1 v1

4 v4 v4 v4 v4

3 v3 v3 v3

2 v2 v2

1 v1

and by C2H2/C2H6 are [v31, v32, v33, v34] = [9, 10, 11, 8].
Then the concat(·) operation can be calculated as follows:

V1 = concat[v11, v21, v31] = concat[5, 9, 9]
= 010110011001B

V2 = concat[v12, v22, v32] = concat[6, 6, 10]
= 011001101010B

V3 = concat[v13, v23, v33] = concat[3, 7, 11]
= 001101111011B

V4 = concat[v14, v24, v34] = concat[4, 8, 8]
= 010010001000B

Assume

bitn = ceil(log2(qj,max+ A∗)) (3)

where bitn is the minimum bit numbers to decode the seg-
ment address and ceil(x) a function rounds the elements of
x to the nearest integers towards infinity. Then, the general
form of Vj can be expressed as follows

Vj =
n∑

i=1

vji2
bitn(i−1), j = 1, . . . , A∗ (4)

UsingEq. (5)to sum the weights located at these addresses
will obtain an output value

y =
A∗∑
j=1

wVj (5)

3.2.4. Hash coding
Hash coding performs a many-to-one uniform random

mapping to generate a physical memory address. As de-
scribed in[17], it compresses the huge virtual address space
into a compact amount of memory and minimizes the prob-
ability of physical address collision (different inputs fire up
the same association address). In this paper, we do not con-
sider the Hash coding because of the memory size is accept-
able.

3.2.5. Update the weighting
During training, the fired addresses are updated using the

following steepest-descent update rule[16,17]

wnew
vi
← wold

vi
+ β

yd − y

A∗
, i = 1, 2, . . . , A∗ (6)

In this equation,yd is the desired output,y the actual output,
and 0< β ≤ 1 the learning gain.

3.2.6. Noise rejection
The quantization and segment mappings give the CMAC

the ability to generalize (produce similar outputs in response
to similar inputs). Continuous variations in input values
translate into discrete variations in input quantization levels.
As described inSection 3.2.3, if the quantization level of
C2H2/C2H4 input change by 1 (3→ 4), then the segment ad-
dress mapping [v11, v12, v13, v14] from [5, 6, 3, 4] change to
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[5, 6, 7, 4]. All virtual address segments remain the same ex-
ceptv13, which shifts from 3 to 7. Consequently, outputs as-
sociated with neighboring input quantization levels will have
three of four virtual addresses in common because only one
address will have changed,V3 shifts from concat[3, 7, 11]=
001101111011B to concat[7, 7, 11]= 001101111011B (as-
suming the other two input levels remain constant). There-
fore, even though the noise added to the input, the CMAC
outputs still can preserve most of the correct features. Note
that for a given input quantization mapping, an increase in
A∗ results in an increase in the amount of shared weights
between neighboring input/output pairs. This will increase
the generalization ability and improve the noise rejection.

3.2.7. Convergence
For a supervised learning system, the convergence is con-

firmed [16]. In this paper, we assume the memory size is
large enough and without using the Hash coding. The colli-
sion will not happen and the convergence is guaranteed.

3.2.8. Learning performance evaluation
Assuming theith node (i = 1, . . . , 9) of Fig. 2outputs 1

represents system with fault typei. The training data number
ng generated by program 1 can be calculated as following
equation

ng = fix

(
0.1− 1

STEP1

)
fix

(
1− 0.1

STEP2

)
fix

(
3− 1

STEP3

)
(7)

where fix(x) function rounds the elements ofx to the nearest
integers towards zero.

Fig. 4. Flowchart of fault diagnosis system.

Let

Ei =
ng∑

j=1

(yij − 1)2, i = 1, . . . , 9 (8)

wherei subscript represents theith layer. Then, we can stop
the training phase whenEi < ε, ε is a positive small number.

3.3. Diagnosis algorithm

As described earlier, the diagnosis algorithm summarized
as follows.Fig. 4 shows the diagnosis flowchart.

3.3.1. Off-line training phase

Step 1. Build the architecture of CMAC NN fault diag-
nosis system, including three input states, nine layers
memory and nine output nodes.

Step 2. Specify the quantization levelqmax, learning gain
β, and the amount of fired memory cellsA∗.

Step 3. Generate the virtual training data via IEC code of
Tables 1 and 2.

Step 4. Quantization, fired addresses coding, and sums
the fired memory cells weights to obtain an output.

Step 5. Update the fires memory cells weights using
Eq. (6).

Step 6. Does the training data finish? No, go to step 3.
Yes, next step.

Step 7. Learning performance evaluation. IfEi < ε, stop
training and save the memory weights. Otherwise, go
to step 3.
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Fig. 5. Diagnosis program interface.

Steps 1–7 is off-line mode. The training time, depends on
the data resolution,qmax, A∗, and the selection of gas ra-
tio range, maybe shorter just few seconds or longer more
than few hours (PENTIUM iii500, using MATLAB pro-
gramming). Fortunately, the off-line mode just only needs
to run one time. Generally, long training time will obtain
better and more exact weights, just like the learning mode
of human being.

Table 4
Tested gas data of transformer and diagnoses by different method

No. H2 CH4 C2H6 C2H4 C2H2 AFC IEC CMC

1 14.7 3.7 10.5 2.7 0.2 1 1 1, 6
2 345 112.3 27.5 51.5 58.8 8 8 8
3 181 262 41 28 0 3 3 3
4 173 334 172 812.5 37.7 5 5 4, 5
5 127 107 11 154 224 9 9 8, 9
6 60 40 6.9 110 70 9 9 8, 9
7 220 340 42 480 14 5 5 4, 5
8 170 320 53 520 3.2 5 5 4, 5
9 27 90 42 63 0.2 4 4 4

10 565 53 34 47 0 8 N 1, 6, 8
11 56 286 96 928 7 5 5 4, 5
12 200 48 14 117 131 9 9 8, 9
13 78 161 86 353 10 5 5 4, 5
14 32.4 5.5 1.4 12.6 13.2 9 9 8, 9
15 980 73 58 12 0 6 6 1, 6
16 160 130 33 96 0 2 2 2, 8
17 650 53 34 20 0 6 6 1, 6
18 95 110 160 50 0 3 3 1, 3
19 300 490 180 360 95 4 N 4
20 200 700 250 740 1 4, 5 4 4, 5

3.3.2. On-line mode
Finish the off-line training mode, then the diagnosis

system can be used to diagnose the fault type of trans-
formers.

Step 8. Load the last saved memory weights and specify
the threshold value (e.g.η = 0.9).

Step 9. Input the gas ratio data that to be diagnosed.
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Step 10. Quantization, fired addresses coding, and sums
the fired memory cells weights to obtain an output. If
the output larger than a specified threshold value, then
the fault type is confirmed.

Step 11. If the diagnosis is correct, go to step 12. Other-
wise, go to step 13.

Step 12. Does the new gas ratio data to be diagnosed?
Yes, go to step 9. No, go to step 14.

Step 13. Update the fires memory cells weights using
Eq. (6).

Step 14. Save the memory weights and exit.

In Fig. 4, the left-hand side represents the off-line mode
flowchart and right-hand side is the on-line diagnosis mode.
The dashed line from left to right denotes the system first

Fig. 6. (a) Weights distribution of memory layers. (b) Zoom view of weights distribution of memory layers.

time to be started.Fig. 5 shows the diagnosis program in-
terface which was designed by Visual C++.

4. Case studies and discussions

4.1. Tested data diagnosis

To demonstrate the effectiveness of the proposed CMAC
NN fault diagnosis method, twenty power transformer DGA
results of from references[7–9] are tested. The detailed gas
data are shown inTable 4, where the AFC, IEC and CMC ex-
press the actual fault type, the diagnoses of the IEC method
and the proposed CMAC NN scheme, respectively. Through
10 iterative times training or learning performance evalua-
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Table 5
CMAC network parameters

Learning times qmax A∗ bitn Memory size η ε β STEP1, STEP2 STEP3

10 12 10 5 32768 0.9 0.01 0.9 0.04 0.1

tion (Ei < 0.01), the memory weights mapping distribution
drawing is shown inFig. 6(a)and zoom view inFig. 6(b).
Fig. 6, similar to the cerebellum of human being, maps the
feature of each fault type on a special memory layer. The
larger difference of each layer distribution represents eas-
ier to diagnose the exact fault type. Similar distribution plot
of each layer means the diagnoses with the multiple fault
types easily.Table 5lists the related parameters of CMAC
network.Table 6shows the detailed outputs of each node.
The last column is the diagnosis fault types considering the
threshold valueη = 0.9 or 0.95 (bold type). Fault type nos.
4 and 5 are medium temperature and high temperature ther-
mal faults, respectively. Therefore, fault type nos. 4 and 5
are similar, and the diagnoses of the 4th, 7th, 8th, 11th, and
13th data contain the multiple faults of nos. 4 and 5 and the
possibility of fault type no. 5 is higher than no. 4. Observe
the IEC code ofTable 2, the codes of fault type nos. 8 and
9 are overlap somewhat. Consequently, the diagnoses of the
5th, 6th, 12th and 14th data output the multiple fault of nos.
8 and 9 are reasonable. Note that the 10th and 19th have
no matching codes for diagnosis by the IEC method, but
the results of the proposed method still detect the possible
faults type. Moreover, the gas ratio of in the 5th and 6th data
are far away the virtual training data bound (the bound of
C2H2/C2H4 is 3, virtual training data take to 6, and the 5th
and 6th data are 14 and 15.94, respectively). The diagnoses

Table 6
Detail outputs of CMAC NN method (no noise)

No Each node output Diagnoses

1 2 3 4 5 6 7 8 9

1 1.0016 0.5000 0.4732 0.2321 0.0358 0.9286 0.8924 0.3351 0 1, 6
2 0.3336 0.3334 0.2102 0.1550 0.1379 0.2857 0.5179 0.9640 0.7334 8
3 0.7499 0.6666 1.0004 0.6937 0.4497 0.4286 0.3948 0.5291 0.1980 3
4 0.1660 0.5000 0.5261 0.9227 1.0002 0 0 0.5447 0.5151 4,5
5 0 0.2500 0 0.1163 0.2063 0 0.0634 0.9638 0.9774 8, 9
6 0.1698 0.6670 0.1052 0.3091 0.4125 0.1429 0.1444 1.0217 1.0175 8, 9
7 0.1660 0.5833 0.5261 0.9247 1.0016 0 0 0.6288 0.6343 4,5
8 0.1660 0.5000 0.5261 0.9227 1.0002 0 0 0.5447 0.5151 4,5
9 0.1660 0.3333 0.8943 1.0000 0.7925 0 0 0.3861 0.2657 4

10 0.9182 0.8335 0.4199 0.1550 0 1.0000 0.8928 0.9227 0.4028 1,6, 8
11 0.1660 0.3333 0.5261 0.9230 1.0000 0 0 0.3861 0.2657 4,5
12 0 0.3334 0 0.1551 0.2746 0 0.3179 0.9640 0.9827 8, 9
13 0.1660 0.5000 0.5261 0.9227 1.0002 0 0 0.5447 0.5151 4,5
14 0 0.3334 0 0.1551 0.2746 0 0.3179 0.9640 0.9827 8, 9
15 0.9182 0.3334 0.4199 0.1550 0 1.0000 0.8924 0.3351 0 1,6
16 0.3347 1.0000 0.3690 0.6941 0.7242 0.1429 0.1444 0.9206 0.8992 2, 8
17 0.9181 0.5004 0.4199 0.1550 0 1.0000 0.8927 0.5246 0.1321 1,6
18 0.9166 0.5837 0.9993 0.3861 0.1738 0.5714 0.5346 0.4267 0.0642 1,3
19 0.4996 0.5833 0.7363 0.9247 0.8291 0.2857 0.2653 0.7369 0.5115 4
20 0.1660 0.3333 0.5781 1.0000 1.0000 0 0 0.3861 0.2657 4, 5

still diagnose the fault type no. 9. The 20th data diagnosed
by the IEC method only obtained the fault type no. 4, but the
proposed CMAC NN scheme confirmed the multiple faults
type nos. 4 and 5. The output values of nodes 4 and 5 are
equal to 1 exactly. In short, the proposed method provided
the most possible fault type diagnoses and never lost the ac-
tual fault type. It is proved that the proposed scheme not only
diagnoses the main fault types of power transformers but also
provides useful information for future fault trend analysis.

4.2. On-line training (learning)

If the wrong fault type happened in the diagnosis pro-
cess, the on-line training is proceeded to refine the mem-
ory weights. The update rule is same as theEq. (6). But
since the characteristic of the proposed scheme is to provide
the most possible fault type diagnosis, we do not use the
anti-excited scheme to update the redundant fault type. In-
crease the threshold valueη or just consider the maximum
output value will filter the redundant fault type naturally.

4.3. Noise rejection test

To test the noise rejection ability of the proposed method,
we added±5% to±50% random noise to the input states,
i.e. added±(5–50)% × rand(1) noise to the input states,



C.-P. Hung, M.-H. Wang / Electric Power Systems Research 71 (2004) 235–244 243

Table 7
Detail outputs of CMAC NN method (noise:±10% rand(1))

No. Each node output Diagnoses

1 2 3 4 5 6 7 8 9

1 1.0015 0.5000 0.4732 0.2321 0.0358 0.9286 0.8924 0.3351 0 1, 6
2 0.3336 0.3334 0.3152 0.1550 0.0682 0.2857 0.6474 0.9640 0.6143 8
3 0.7499 0.6666 0.9993 0.6937 0.4497 0.4286 0.3948 0.6214 0.1980 3
4 0.1660 0.5000 0.5261 0.9227 1.0002 0 0 0.5447 0.5151 4, 5
5 0 0.3334 0 0.1163 0.2063 0 0.0634 0.9638 0.9774 8, 9
6 0.1260 0.6664 0.1052 0.3091 0.4125 0.1429 0.1444 1.0085 1.0093 8, 9
7 0.1660 0.5833 0.5261 0.9247 1.0016 0 0 0.6288 0.7639 4, 5
8 0.1660 0.5000 0.5261 0.9227 1.0002 0 0 0.5447 0.5151 4, 5
9 0.1660 0.3333 0.8943 1.0000 0.7925 0 0 0.3861 0.2657 4

10 0.9182 0.8335 0.3152 0.1550 0.0682 0.8571 0.7530 0.9227 0.5323 1, 8
11 0.1660 0.3333 0.5261 0.9230 1.0000 0 0 0.3861 0.2657 4, 5
12 0 0.3334 0 0.1551 0.2746 0 0.3179 0.9640 0.9827 8, 9
13 0.1660 0.5000 0.5261 0.9227 1.0002 0 0 0.4669 0.4025 4, 5
14 0.0834 0.3334 0 0.1551 0.2746 0.0714 0.3179 0.9924 0.9991 8, 9
15 0.9182 0.3334 0.4199 0.1550 0 1.0000 0.8924 0.3351 0 1, 6
16 0.2494 0.8333 0.4209 0.8481 0.8622 0.1429 0.1444 0.9206 0.8987 8
17 0.9181 0.5004 0.4199 0.1550 0 1.0000 0.8927 0.5246 0.1321 1, 6
18 0.9166 0.5837 0.9993 0.3861 0.1738 0.5714 0.5346 0.4267 0.0642 1, 3
19 0.4996 0.5833 0.7363 0.7706 0.8291 0.2857 0.2653 0.7369 0.5115 N
20 0.1660 0.3333 0.5781 1.0000 1.0000 0 0 0.3861 0.2657 4, 5

where rand(1) is normal distribution random function be-
tween 0 and 1.Table 7shows the detailed output of each
node for input node with±10% noise.Table 8shows the
diagnoses for different percentage noise added. In most test
data, the diagnoses still output correct fault type even though
the noise over 50%.Table 9shows the diagnoses perfor-
mance with different percentage noise, the last column are
the IEC method results. As observed fromTables 8 and 9, it
proved the proposed method with high noise rejection abil-
ity and capable of multiple faults detection.

Table 8
Diagnoses of±5–50% random noise added using CMAC NN method

No. Diagnoses for different percentage noise

5% 10% 15% 20% 25% 30% 50%

1 1, 6 1, 6 1, 6 1 1, 6 1, 6 1
2 8 8 8 8 8 8 8
3 3 3 3 3 3 3 3
4 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5
5 8, 9 8, 9 8, 9 8, 9 8, 9 8, 9 8, 9
6 8, 9 8, 9 8, 9 8, 9 8, 9 8, 9 8, 9
7 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5
8 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5, 8
9 4 4 4 4, 5 4 4 4

10 1, 6, 8 1, 8 6, 8 1, 8 2, 6, 8 1, 8 1, 8
11 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5
12 8, 9 8, 9 8, 9 8, 9 8, 9 8, 9 8, 9
13 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5
14 8, 9 8, 9 8, 9 8, 9 8, 9 8, 9 8, 9
15 1, 6 1, 6 6 1, 6 1, 6 1, 6 1, 6
16 |8| |8| 2, 8 |8| 2, 8 |N| |8|
17 1, 6 1, 6 1, 6 1, 6 1, 6 1, 6 1, 6
18 1, 3 1, 3 1, 3 1, 3 1, 3 |1| |1|
19 4 |N| 4 4 |N| 4 |N|
20 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5 4, 5

Table 9
Diagnosis performance comparison

Noise (%) CMAC NN method (η = 0.9, %) IEC method (%)

±0 100 86
±5 95 81
±10 90 72
±15 100 68
±20 95 58
±25 95 38
±30 90 38
±50 85 34

4.4. Discussion

In this paper, we did not point out how to obtain the opti-
mal design parameters, such as the quantization levelsqi,max,
fired memory numberA∗. This is related to the resolution
problem and no exact answer to decide the optimal value.
Fortunately, our diagnosis system provided flexible param-
eters setting function; it is easy to obtain proper parameters
by try and error. However, the needed memory size is our
major concern in real application. How to develop new fired
memory addresses coding technology[18], to obtain opti-
mal memory size for specified resolution, and to implement
the diagnosis scheme by chip design are our future work and
understudying.

5. Conclusion

This paper presents a novel CMAC NN fault diagnosis
method for power transformers. Using the characteristic of
generalization, local reflexive action and self-learning abil-
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ity, the proposed scheme achieves at least the following mer-
its: (1) do not require the actual data to train the CMAC
network and high diagnosis accuracy is obtained; (2) detect
the main fault type and provide useful information for fu-
ture fault trends and multiple faults analysis; (3) high noise
rejection ability; (4) suit to non-training data and associate
the most similar fault type; and (5) do not require extra any
expert experience to train the CMAC network. The tested
data demonstrate the success of proposed scheme.
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Appendix A. List of symbols

A∗ the number of associated memory cells
CMAC cerebellar model articulation controller
bitn the minimum bit numbers to decode the

segment address
DGA dissolved gas analysis
Ei performance evaluation value of theith fault

pattern
ng training data number
qimax quantization levels for theith input
Vj the jth fired address
Vji the ith segment address ofjth fired address
wnew

vi
new weight ofVj memory address

wold
vi

old weight ofVj memory address
y the actual output
yd the desired output

Greek letters
β the learning gain
ε small positive number
η threshold value
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